Gas Pressure Sensor

(Order Code GPS-BTA)

The Vernier Gas Pressure Sensor is used to monitor pressure changes in gas-law experiments in chemistry
 and physics, such as Boyle's law (pressure vs. volume) and Gay-Lussac's law (pressure vs. absolute temperature). Vapor pressure of various liquids and solutions can be monitored using this sensor. Biology teachers can use the Gas Pressure Sensor to monitor the production or consumption of oxygen or carbon dioxide gases in an enclosed atmosphere. The following is a partial list of activities and experiments that can be performed using this sensor.

- Investigate the relationship between pressure and volume, Boyle’s law.
- Measure vapor pressure of liquids.
- Study the effect of temperature on gas pressure, Gay-Lussac’s law.
- Monitor the production of O_{2} during photosynthesis of an aquatic plant in a closed system.
- Determine the rate of transpiration for a plant under different conditions.
- Determine the rate of respiration in germinating pea or bean seeds.
- Monitor the pressure of a confined air pocket as water moves in and out of a semi-permeable membrane by osmosis.
- Study the effect of temperature and concentration on the rate of decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$.
- Study human respiratory patterns using the Vernier Respiration Monitor Belt.

Gas Pressure Sensor Accessories

Included with your Gas Pressure Sensor are accessories to allow you to connect it to a reaction container, such as an Erlenmeyer flask. Check to be sure that each of these items is included:

- two tapered valve connectors inserted into a No. 5 stopper
- one tapered valve connector inserted into a No. 1 stopper
- one two-way valve
- two Luer-lock connectors (white) connected to either end of a piece of plastic tubing
- one 20 mL syringe
- two transpiration tubing clamps (white)

Here is a summary of some of the uses of the accessories included with your Gas Pressure Sensor:
The white stem on the end of the Gas Pressure Sensor Box has a small threaded end called a luer lock. With a gentle half turn, you may attach the plastic tubing to this stem using one of the Luer connectors already mounted on both ends of the tubing. The Luer connector at the other end of the plastic tubing can then be connected to one of the stems on the rubber stoppers that are supplied, as shown in Figure 1.

The stopper can then be inserted into a flask or test tube to provide an airtight container to investigate a confined gas, as shown in Figure 2. Note: The 2nd valve on the rubber stopper is shown in a closed position.

You can also attach the 20 mL plastic syringe included with the Gas Pressure Sensor directly to this stem, as

Figure 2 shown here in Figure 3.

Collecting Data with the Gas Pressure Sensor

This sensor can be used with the following interfaces to collect data:

- Vernier LabQuest ${ }^{\mathrm{TM}}$ as a standalone device or with a computer
- Vernier LabQuest ${ }^{\circledR}$ Mini with a computer
- Vernier LabPro ${ }^{\circledR}$ with a computer, TI graphing calculator, or Palm ${ }^{\circledR}$ handheld
- Vernier Go! ${ }^{\circledR}$ Link
- Vernier EasyLink ${ }^{\circledR}$
- Vernier SensorDAQ ${ }^{\text {tm }}$
- CBL $2^{\text {tм }}$

Here is the general procedure to follow when using the Gas Pressure Sensor:

1. Connect the Gas Pressure Sensor to the interface.
2. Start the data-collection software ${ }^{1}$.
3. The software will identify the Gas Pressure Sensor and load a default datacollection setup. You are now ready to collect data.

Data-Collection Software

This sensor can be used with an interface and the following data-collection software.

- Logger Pro 3 This computer program is used with LabQuest, LabQuest Mini, LabPro, or Go!Link
- Logger Pro 2 This computer program is used with ULI or Serial Box Interface
- Logger Lite This computer program is used with LabQuest, LabQuest Mini, LabPro, or Go!Link
- LabQuest App This program is used when LabQuest is used as a standalone device.
- EasyData App This calculator application for the TI-83 Plus and TI-84 Plus can be used with CBL 2, LabPro, and Vernier EasyLink. We recommend version 2.0 or newer, which can be downloaded from the Vernier web site, www.vernier.com/easy/easydata.html, and then transferred to the calculator. See the Vernier web site, www.vernier.com/calc/software/index.html for more information on the App and Program Transfer Guidebook.
- DataMate program Use DataMate with LabPro or CBL 2 and TI-73, TI-83, TI-84, TI-86, TI-89, and Voyage 200 calculators. See the LabPro and CBL 2 Guidebooks for instructions on transferring DataMate to the calculator.
- Data Pro This program is used with LabPro and a Palm handheld.
- LabVIEW National Instruments LabVIEW ${ }^{\text {TM }}$ software is a graphical programming language sold by National Instruments. It is used with SensorDAQ and can be used with a number of other Vernier interfaces. See www.vernier.com/labview for more information.

[^0]NOTE: This product is to be used for educational purposes only. It is not appropriate for industrial, medical, research, or commercial applications.

Specifications

Pressure range
Maximum pressure that the sensor can tolerate without permanent damage 13-bit resolution (SensorDAQ)
12-bit resolution (LabPro, LabQuest, LabQuest Mini, Go! Link)
10-bit resolution (CBL 2)
Sensing element
Accuracy
Response time
Stored Calibration Values for the Gas
Pressure Sensor

kPa	slope	51.71
	intercept	-25.86
atm	slope	0.5103
	intercept	0
mm Hg	slope	387.8
	intercept	0

* Full Scale Span Best Straight Line

How the Gas Pressure Sensor Works

The active sensor in this unit is the Honeywell SSCMRNN030PAAA5 pressure transducer. It has a membrane which flexes as pressure changes. This sensor is arranged to measure absolute pressure. One side of the membrane is a vacuum, while the other side is open to the atmosphere. The sensor produces an output voltage which varies in a linear way with absolute pressure. It includes special circuitry to minimize errors caused by changes in temperature. We provide an amplifier circuit that conditions the signal from the pressure transducer. With this circuit, the output voltage from the Gas Pressure Sensor will be linear with respect to pressure, with 0.00 volts corresponding to $0 \mathrm{kPa}(0 \mathrm{~atm})$ and 4.5 volts corresponding to the sensor's maximum pressure, 210 kPa (2.1 atm).

This sensor is equipped with circuitry that supports auto-ID. When used with LabQuest, LabQuest Mini, LabPro, Go! Link, SensorDAQ, EasyLink, or CBL 2, the data-collection software identifies the sensor and uses pre-defined parameters to configure an experiment appropriate to the recognized sensor.

Pressure Units

Pressure can be measured in many different units. We quote values here in several of the units shown below. Some equivalent values for 1 atmosphere are:

$$
\begin{aligned}
1 \text { atmosphere } & =101.325 \mathrm{kPa} \\
& =760 \mathrm{~mm} \mathrm{Hg} \\
& =29.92 \mathrm{in} . \text { of } \mathrm{Hg}\left(\text { at } 0^{\circ} \mathrm{C}\right) \\
& =14.70 \mathrm{psi} \\
& =1013 \text { millibar }
\end{aligned}
$$

Do I Need to Calibrate the Gas Pressure Sensor? "No."

We feel that you should not have to perform a new calibration when using the Gas Pressure Sensor in the classroom. We have set the sensor to match our stored calibration before shipping it. You can simply use the appropriate calibration file that is stored in your data-collection program from Vernier in any of these ways: If you would like to perform your own calibrations, follow the steps described here. The standard calibration procedure we use with all of our sensors is a 2-point calibration. For the first calibration point perform the following operation: Allow the sensor to equilibrate to atmospheric pressure. When the voltage reading displayed on the computer or calculator stabilizes, enter the atmospheric pressure, as recorded with a barometer.
For the second calibration point, do one of the following:

- Use the syringe provided with the Gas Pressure Sensor to produce a pressure very near zero. Before connecting the syringe, push its plunger all the way in to the 0 mL mark. Connect the syringe directly to the Gas Pressure Sensor stem. To produce near-zero pressure, pull the plunger out to the 20 mL position. If your syringe and valve have a tight seal, the pressure will be $\sim 0 \mathrm{kPa}(0 \mathrm{~atm}$ or 0 mm Hg).
- Apply pressure with a pump, measuring it at the same time with a pressure gauge.
- Before connecting the syringe, move the plunger on the syringe so that the syringe volume is set at 10 mL . Connect the syringe to the stem of the Gas Pressure Sensor. Move the syringe plunger so that the voltage reading displayed on the computer or calculator is 3.0 volts. Enter a value of 129.3 kPa as the value (or 1.276 atm , or 969.8 mm Hg) for this calibration point.

Suggested Experiments

We have a wide variety of experiments already written for use with the Gas Pressure Sensor in our chemistry, biology, and physical science lab books.. Here are some of the experiments you can perform with your Gas Pressure Sensor.

Boyle's Law (Pressure vs. Volume)

Experiment 6, Chemistry with Vernier
Experiment 30, Physical Science with Vernier

Gay-Lussac's Law (Pressure vs. Absolute Temperature)

Experiment 7, Chemistry with Vernier
Experiment 31, Physical Science with Vernier

Vapor Pressure Measurements

Experiment 10, Chemistry with Vernier

Rate of Plant Transpiration

Experiment 10, Biology with Vernier
Measuring Respiration of Insects
Experiment 23, Biology with Vernier
Control of Human Respiration
Experiment 26, Biology with Vernier

Pressure in Liquids: Depth Measurements

If you measure the pressure at the end of a long plastic tube forced underwater, you can indirectly measure depth. Connect the tubing to the stem of the Gas Pressure Sensor and then put the end of the tube under water. The pressure reading will increase $8.105 \mathrm{kPa}(0.0800 \mathrm{~atm}$ or 60.79 mm Hg) for every meter below the surface of the water.
Note: If you measure depth in this way, the depth you are measuring is to the top of the air, which extends up the tube for a short distance

Additional Pressure Sensor Accessories

In addition to the accessories that ship with the Gas Pressure Sensor, the following accessories are available for purchase separately:

- Pressure Sensor Accessories Kit PS-ACC
- \#1 1-Hole Rubber Stopper PS-STOP1
- \#5 2-Hole Rubber Stopper PS-STOP5
- Luer Lock Connector

PS-LUER

- Plastic 2-Way Valve PS-2WAY
- Plastic Tubing PS-TUBING
- Stopper Stem PS-STEM
- Syringe

PS-STEM
PS-SYR

- Plastic Tubing Clamps (pkg. of 100) PTC

Warranty

Vernier warrants this product to be free from defects in materials and workmanship for a period of five years from the date of shipment to the customer. This warranty does not cover damage to the product caused by abuse or improper use.

Measure. Analyze. Learn.

Vernier Software \& Technology
13979 S.W. Millikan Way • Beaverton, OR 97005-2886 Toll Free (888) 837-6437 • (503) 277-2299 • FAX (503) 277-2440
info@vernier.com • www.vernier.com

Rev. 8/1/11
Logger Pro, Logger Lite, Vernier LabPro, Vernier LabQuest, Vernier LabQuest Mini, Go! Link, Vernier EasyLink and other marks shown are our registered trademarks in the United States.
CBL 2, TI-GRAPH LINK, and TI Connect are trademarks of Texas Instruments.
All other marks not owned by us that appear herein are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by us.

[^0]: ${ }^{1}$ If you are using Logger Pro 2 with either a ULI or SBI, the sensor will not auto-ID. Open an experiment file for the Gas Pressure Sensor in the Probes \& Sensors folder.

